Organizations today want to be predictive; they want to gain information and insight from data that enables them to detect patterns and trends; anticipate events; spot anomalies; forecast using what-if simulations; and learn of changes in customer behavior so that staff can take actions that lead to desired business outcomes. Success in being predictive and proactive can be a game changer for many business functions and operations, including marketing and sales, operations management, finance, and risk management. Although it has been around for decades, analytics is a technology whose time has finally come. A variety of market forces have joined to make this possible, including an increase in computing power, a better understanding of the value of the technology, the rise of certain economic forces, and the advent of big data. Companies are looking to use the technology to predict trends and understand behavior for better business performance. Forward-looking companies are using predictive analytics across a range of disparate data types to achieve greater value. Companies are looking to also deploy predictive analytics against their big data. Predictive analytics is also being operationalized more frequently as part of a business process. Predictive analytics complements business intelligence and data discovery, and can enable organizations to go beyond the analytic complexity limits of many online analytical processing (OLAP) implementations. It is evolving from a specialized activity once utilized only among elite firms and users to one that could become mainstream across industries and market sectors